ZERO & FIRST ORDER REACTION

Mahendra Ghosh Assistant Professor of Chemistry Bankura Christian College

First Order Reactions

For a $A \rightarrow$ products

Differential: rate = -

Integrated:

$$\ln[A]_t = -kt + \ln[A]_0$$

 $\frac{\Delta[A]}{\Delta t} = k[A]$

$$\ln \frac{[A]_{o}}{[A]_{t}} = kt$$

Half-life, first order reactions

Integrated law :

$$\ln \frac{[A]_o}{[A]_t} = kt$$

Half-life : Half of initial reacted $[A]_t = \frac{1}{2}[A]_0$

Independent of $[A]_0$

Zero Order Reactions

For a $A \rightarrow$ products

Differential:

rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]^0 = k$$

-

Integrated:

$$[\mathbf{A}]_t = -\mathbf{k}t + [\mathbf{A}]_0$$

$$[\mathbf{A}]_t - [\mathbf{A}]_0 = -\mathbf{k}t$$

Elementary Reactions and Molecularity

Table 16. Rate Laws for General Elemetary Steps		
Elementary Step	Molecularity	Rate Law
$A \longrightarrow product$ $2A \longrightarrow product$ $A + B \longrightarrow product$ $2A + B \longrightarrow product$	Unimolecular Bimolecular Bimolecular Termolecular	Rate = $k[A]$ Rate = $k[A]^2$ Rate = $k[A][B]$ Rate = $k[A]^2[B]$

Arrhenius Equation

$$k = Ae^{\frac{E_a}{RT}}$$

- k : rate constant
- E_a: activation energy (minimum required)
- > T: absolute temperature
- R: universal gas constant
- > A: orientation factor

